Minimal Model for Intracellular Calcium Oscillations and Electrical Bursting in Melanotrope Cells of Xenopus Laevis
نویسندگان
چکیده
A minimal model is presented to explain changes in frequency, shape, and amplitude of Ca2+ oscillations in the neuroendocrine melanotrope cell of Xenopus Laevis. It describes the cell as a plasma membrane oscillator with influx of extracellular Ca2+ via voltage-gated Ca2+ channels in the plasma membrane. The Ca2+ oscillations in the Xenopus melanotrope show specific features that cannot be explained by previous models for electrically bursting cells using one set of parameters. The model assumes a KCa-channel with slow Ca2+-dependent gating kinetics that initiates and terminates the bursts. The slow kinetics of this channel cause an activation of the Kca-channel with a phase shift relative to the intracellular Ca2+ concentration. The phase shift, together with the presence of a Na+ channel that has a lower threshold than the Ca2+ channel, generate the characteristic features of the Ca2+ oscillations in the Xenopus melanotrope cell.
منابع مشابه
Sauvagine regulates Ca2+ oscillations and electrical membrane activity of melanotrope cells of Xenopus laevis.
Ca2+ oscillations regulate secretion of the hormone alpha-melanphore-stimulating hormone (alpha-MSH) by the neuroendocrine pituitary melanotrope cells of the amphibian Xenopus laevis. These Ca2+ oscillations are built up by discrete increments in the intracellular Ca2+ concentration, the Ca2+ steps, which are generated by electrical membrane bursting firing activity. It has been demonstrated th...
متن کاملDynamics of glucocorticoid and mineralocorticoid receptors in the Xenopus laevis pituitary pars intermedia.
We showed the presence of glucocorticoid (GR) and mineralocorticoid (MR) receptors in different populations of Xenopus laevis melanotrope cells and revealed their downregulation (MR) and upregulation (GR) during dark background adaptation. Corticosterone did not affect short-term intracellular calcium dynamics and alpha-melanophore-stimulating hormone secretion, suggesting a role for GR and MR ...
متن کاملElectrical bursting, calcium oscillations, and synchronization of pancreatic islets.
Oscillations are an integral part of insulin secretion and are ultimately due to oscillations in the electrical activity of pancreatic beta-cells, called bursting. In this chapter we discuss islet bursting oscillations and a unified biophysical model for this multi-scale behavior. We describe how electrical bursting is related to oscillations in the intracellular Ca(2+) concentration within bet...
متن کاملAdenophostin A induces spatially restricted calcium signaling in Xenopus laevis oocytes.
The activation of intracellular calcium release and calcium entry across the plasmalemma in response to intracellular application of inositol 2,4,5-trisphosphate and adenophostin A, two metabolically stable agonists for inositol 1,4,5-trisphosphate receptors, was investigated using Xenopus laevis oocytes and confocal imaging. Intracellular injection of inositol 2,4,5-trisphosphate induced a rap...
متن کاملPii: S0303-2647(00)00090-3
Intracellular calcium oscillations, which are oscillatory changes of cytosolic calcium concentration in response to agonist stimulation, are experimentally well observed in various living cells. Simple calcium oscillations represent the most common pattern and many mathematical models have been published to describe this type of oscillation. On the other hand, relatively few theoretical studies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2001